
(Un)Supervised Learning for
Malware with quickSpan
Thomas Given-Wilson

Cisco- Ecole Polytechnique
Symposium,
Paris, France 10th April 2018

Goals

(Un)Supervised Learning for Malware with quickSpan 2

Supervised Learning:
• Detect existing and new variants of malware
• Use behaviour (not YARA), here SCDGs
• Middle line-of-defence
Unsupervised Learning:
• Group unknown programs
• Use behaviour, again SCDGs
• Aid analysis

SCDG Toy Example

(Un)Supervised Learning for Malware with quickSpan 3

1 - Binary

2 - Trace

3 - Graph

Common Subgraphs: gSpan Algorithm

(Un)Supervised Learning for Malware with quickSpan 4

Find common sub-graphs:
• Builds set of (sub-)graphs
• That meet “support” (% of

graph set), here support=1.0
• Example set of graphs

(Note: ignores edge
direction and edge
labels here.)

gSpan (Implementation) Problems

(Un)Supervised Learning for Malware with quickSpan 5

Algorithm:
• Scales poorly with graph size
• Vulnerable to pathological cases
Implementation (gBolt [1]):
• Ignores edge direction
• Runs till completion/failure
• Memory exhaustion crashes

1 - https://github.com/Jokeren/DataMining-gSpan

quickSpan: Improved gSpan Implementation

(Un)Supervised Learning for Malware with quickSpan 6

Extended and improved parallel version of gBolt:
• Edge direction
• (Safe) Time out
• Memory safety (safe failure)
• Minimum and maximum output size
• Fast exit on “success”
• Thread control
• Removes duplicate sub-graphs
• Incremental output
• “Best” output
• …

quickSpan:
Comparison

(Un)Supervised Learning for Malware with quickSpan 7

Performs very well
overall!
Data sets where
quickSpan is not clear
winner:
• AIDS
• Cancer

Note: All data sets are
public and gathered from
graph mining papers.
(except Pathological).

Supervised Classification Using gSpan

(Un)Supervised Learning for Malware with quickSpan 8

Learning:
1. Given graphs from malware family Fi:

obtain canonical representation gi =
gSpan(Fi, learning_parameters)

Classification:
1. Given sample s

For each gi:
calculate similarity using sim(s,gi) =

max_size(gSpan({s,gi}, classification_parameters))
2. Classification result r = max (sim(s,gi))
3. If r > threshold then classify as “malware”

otherwise classify as “cleanware” …(or “unknown”)

Classification Example

(Un)Supervised Learning for Malware with quickSpan 9

Learning:
• Find common subgraphs
• Take largest 1
Classification:
• Find common sub-graphs
• Test threshold (0.25)?

size(AB)/size(ABC) = 2/3 > 0.25 => true, classify as “malware”

Learned Graph Sample

Mirai Case Study: Data Set

(Un)Supervised Learning for Malware with quickSpan 10

Mirai:
• Collected from IoT honeypot (6 April to 14 August 2017)
• Selected only X86 32-bit ELF
Cleanware:
• Static-get distribution[1]

After (attempted) SCDG extraction:
• 504 Mirai SCDGs
• 942 clean SCDGs

1 - http://s.minos.io/

Mirai Case Study: Experiments

Best parameters:
• Undirected
• Learning time 2500
• Support 0.7
• Number of graphs 50
• Threshold 0.32

(Un)Supervised Learning for Malware with quickSpan 11

Conclusions:
• Zero false positives!
• Low false negatives.
• Reasonable classification

time (1.56s)
Compared with YARA:
• Comparable/better 𝐹".$ score

(YARA: 84.38 to 98.61%)
• Higher cost

Unsupervised Learning: Clustering

(Un)Supervised Learning for Malware with quickSpan 12

• Exploit gSpan for clustering graphs
– Base algorithm by Seeland et al.
– Allows overlap of clusters

• Apply this to SCDGs
– Cluster by common behaviour
– Should correlate with families

• Aim is to cluster suspected malware samples
– Complement to classification
– Weaker correlation => show new families/evolution

Seeland Clustering Algorithm

(Un)Supervised Learning for Malware with quickSpan 13

Find clusters in size ordered graphs using gSpan:
For each graph g in the sequence:

clustered = false
For each cluster C in clusters:

If gspan(C+g,1.0,min_size) != {} then
C += g
clustered = true

If clustered == false
clusters.append({g})

Cluster 1

New graph..

Cluster 2
Run gSpan with Cluster 1 …

not common enough, new cluster.common enough, add to cluster 1.

Run gSpan with Cluster 2 …

not common enough, but already clustered.

Practical Clustering

(Un)Supervised Learning for Malware with quickSpan 14

The min_size parameter is unclear, possibilities:
• Fixed/absolute (base algorithm):

– User must specify/know the optimal size
– Size is chosen uniformly for all graph sizes

• Percentage of graph:
– User must specify/know the percentage that is optimal
– Percentage automatically adjusts for graph size

• Computation based:
– User doesn’t need to specify
– Automatically adjusts for graph size

The sorting by size is sub-optimal:
• Instead we use random ordering

Initial Experiment Configuration

(Un)Supervised Learning for Malware with quickSpan 15

Small sample experiment with:
• 5 families (1-20 graphs each):

– Browserfox 6 graphs
– Loadmoney 16 graphs
– Shodi 1 graph
– Virlock 20 graphs
– Zbot 8 graphs

• quickSpan parameters:
– Timeout
– Direction
– min_size

Experimental Results

(Un)Supervised Learning for Malware with quickSpan 16

LM1

LM3

LM2

LM5
LM4

LM6

LM8

LM9

LM7

LM10 LM12

LM11

LM15

LM14

LM13 LM16

BF1
BF2

BF3

BF6BF4
BF5

SH

VI1

VI3

VI2
VI4

VI5

VI6

VI8

VI7

VI9

VI10
VI11

VI12

VI13

VI14

VI15

VI16

VI17

VI18

VI19

VI20

ZB1

ZB2

ZB8ZB3

ZB7

ZB6

ZB5
ZB4

Browserfox (BF)
Loadmoney (LM)
Shodi (SH)
Virlock (VI)
Zbot (ZB)

Parameters:
Timeout=500
Directed=True
Min_size=

Computation

Conclusions

(Un)Supervised Learning for Malware with quickSpan 17

gSpan:
• Good graph mining algorithm
• quickSpan adds performance and quality of life features
• Useful for both supervised and unsupervised learning
Supervised Learning:
• Good results on Mirai
• Comparable with YARA
• Highly tuneable
Unsupervised Learning:
• Good results for correctness of clustering
• Highly tuneable

