

(Un)Supervised Learning for Malware with quickSpan

Thomas Given-Wilson

Cisco- Ecole Polytechnique Symposium, Paris, France

10th April 2018

Goals

Supervised Learning:

- Detect existing and new variants of malware
- Use behaviour (not YARA), here SCDGs
- Middle line-of-defence

Unsupervised Learning:

- Group unknown programs
- Use behaviour, again SCDGs
- Aid analysis

nnía

SCDG Toy Example

1 - Binary

section .data 1 newdir db "/tmp" 2

section .text

global start

syscall

pop rdi

syscall

mov rax, 95

mov rdi, 0

mov rax, 60

6 start:

5

7

8

9

10

11

12

13

14

15

16

17

18

19

mov rdi, newdir ; 1st arg

mov rax, 80

syscall push rax

mov rdi, newdir ; 1st arg

mov rax, 80

: add return value of second chdir call as umask add rdi, rax

; sys_umask

; exit (0)

20 syscall 21

Common Subgraphs: gSpan Algorithm

Find common sub-graphs:

- Builds set of (sub-)graphs
- That meet "support" (% of graph set), here support=1.0
- Example set of graphs (Note: ignores edge direction and edge labels here.)

Α

B

gSpan (Implementation) Problems

Algorithm:

- Scales poorly with graph size
- Vulnerable to pathological cases Implementation (gBolt [1]):
- Ignores edge direction
- Runs till completion/failure
- Memory exhaustion crashes

1 - https://github.com/Jokeren/DataMining-gSpan

quickSpan: Improved gSpan Implementation

Extended and improved parallel version of gBolt:

- Edge direction
- (Safe) Time out
- *Memory safety (safe failure)*
- Minimum and maximum output size
- Fast exit on "success"
- Thread control
- Removes duplicate sub-graphs
- Incremental output
- "Best" output

•

quickSpan: **Comparison**

- Performs very well overall!
- Data sets where quickSpan is not clear winner:
- AIDS
- Cancer

Note: All data sets are public and gathered from graph mining papers. (except Pathological).

(Un)Supervised Learning for Malware with

Data set name		Support	\mathbf{gBolt}	GLP	quickSpan	$quickSpan^{1}$	SF
BrainNet	ADHD	0.10	0.27	1.77	0.11	0.13	-
		0.15	0.27	0.14	0.10	0.03	-
		0.20	0.28	0.07	0.08	0.02	-
		0.50	0.13	0.07	0.07	0.02	-
	Hyper/Impulsive	0.10	14.12	-	11.48	117.54	-
		0.15	0.67	54.06	0.67	1.44	-
		0.20	0.39	2.47	0.19	0.44	-
		0.50	0.19	0.11	0.07	0.06	-
	Gender	0.10	0.34	11.16	0.16	0.52	-
		0.15	0.30	1.35	0.10	0.12	-
		0.20	0.30	0.10	0.11	0.05	-
		0.50	0.16	0.05	0.08	0.03	-
Chemical 340		0.10	0.37	1.06	0.18	0.21	0.23
		0.15	0.34	0.68	0.14	0.12	0.14
		0.20	0.39	0.37	0.13	0.09	0.13
		0.50	0.28	0.18	0.10	0.06	0.0
Mutagen		0.10	0.40	0.70	0.23	0.28	-
		0.15	0.40	0.40	0.16	0.24	-
		0.20	0.37	0.32	0.15	0.19	
		0.50	0.22	0.13	0.12	0.15	-
NCI	AIDS	0.10	5.73	90.96	5.75	15.15	-
		0.15	5.21	48.11	5.36	11.39	-
		0.20	4.84	34.45	4.78	9.75	-
		0.50	4.19	4.33	4.19	5.16	
	AIDS Active	0.10	0.59	18.62	0.36	1.20	2.5
		0.15	0.45	4.70	0.28	0.58	0.9
		0.20	0.43	1.52	0.25	0.26	0.5
		0.50	0.32	0.29	0.18	0.11	0.1
	AIDS + Cancer	0.10	3.34	57.28	3.32	8.37	
		0.15	3.10	29.51	3.05	6.32	-
		0.20	2.80	20.66	2.86	5.26	-
		0.50	2.55	6.78	2.47	3.13	
	Cancer	0.10	19.05	363.91	20.44	89.04	
		0.15	15.11	170.93	15.50	51.63	
		0.20	13.60	108.72	14.04	38.19	
		0.50	10.42	29.90	10.77	14.99	
Social	DBLP	0.10	0.84	1.51	0.80	0.77	
		0.15	0.84	1.48	0.85	0.78	
		0.20	0.85	1.51	0.82	0.75	
		0.50	0.82	1.50	0.89	0.75	
	Twitter	0.10	1.61	3.01	1.61	1.62	
		0.15	1.66	3.06	1.61	1.52	
		0.20	1.63	3.06	1.60	1.49	
		0.50	1.70	3.04	1.78	1.48	-
Pathological 2		1.00	1	1	84 54(24 16)	81.21/23.38)	
Fathological 2		1.00		1	04.04(24.10)	01.21(20.00)	_

Supervised Classification Using gSpan

Learning:

 Given graphs from malware family Fi: obtain canonical representation gi = gSpan(Fi, learning_parameters)

Classification:

1. Given sample s

For each gi:

calculate similarity using sim(s,gi) =

max_size(gSpan({s,gi}, classification_parameters))

- 2. Classification result r = max (sim(s,gi))
- If r > threshold then classify as "malware" otherwise classify as "cleanware" ...(or "unknown")

Classification Example

Learning:

- Find common subgraphs
- Take largest 1

Classification:

- Find common sub-graphs
- Test threshold (0.25)?

size(AB)/size(ABC) = 2/3 > 0.25 => true, classify as "malware"

Mirai Case Study: Data Set

Mirai:

- Collected from IoT honeypot (6 April to 14 August 2017)
- Selected only X86 32-bit ELF

Cleanware:

• Static-get distribution[1]

After (attempted) SCDG extraction:

- 504 Mirai SCDGs
- 942 clean SCDGs

1 - http://s.minos.io/

Mirai Case Study: Experiments

Best parameters:

- Undirected
- Learning time 2500
- Support 0.7
- Number of graphs 50
- Threshold 0.32

	Mirai samples	Clean samples
Detected Mirai	98.09 (97.12%)	0 (0%)
Detected Clean	2.91 (2.88%)	101 (100%)

Accuracy	Precision	F _{0.5} score
98.56%	100.00%	99.41%

Conclusions:

- Zero false positives!
- Low false negatives.
- Reasonable classification time (1.56s)

Compared with YARA:

- Comparable/better F_{0.5} score (YARA: 84.38 to 98.61%)
- Higher cost

Unsupervised Learning: Clustering

- Exploit gSpan for clustering graphs
 - Base algorithm by Seeland et al.
 - Allows overlap of clusters
- Apply this to SCDGs
 - Cluster by common behaviour
 - Should correlate with families
- Aim is to cluster suspected malware samples
 - Complement to classification
 - Weaker correlation => show new families/evolution

Seeland Clustering Algorithm

Cluster 1

Cluster 2

Α

Practical Clustering

The min_size parameter is unclear, possibilities:

- Fixed/absolute (base algorithm):
 - User must specify/know the optimal size
 - Size is chosen uniformly for all graph sizes
- Percentage of graph:
 - User must specify/know the percentage that is optimal
 - Percentage automatically adjusts for graph size
- Computation based:
 - User doesn't need to specify
 - Automatically adjusts for graph size

The sorting by size is sub-optimal:

• Instead we use random ordering

Initial Experiment Configuration

Small sample experiment with:

- 5 families (1-20 graphs each):
 - Browserfox 6 graphs
 - Loadmoney 16 graphs
 - Shodi 1 graph
 - Virlock 20 graphs
 - Zbot 8 graphs
- quickSpan parameters:
 - Timeout
 - Direction
 - min_size

Experimental Results

Conclusions

gSpan:

- Good graph mining algorithm
- quickSpan adds performance and quality of life features
- Useful for both supervised and unsupervised learning Supervised Learning:
- Good results on Mirai
- Comparable with YARA
- Highly tuneable

Unsupervised Learning:

- Good results for correctness of clustering
- Highly tuneable

