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Goals
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Supervised Learning:
• Detect existing and new variants of malware
• Use behaviour (not YARA), here SCDGs
• Middle line-of-defence
Unsupervised Learning:
• Group unknown programs
• Use behaviour, again SCDGs
• Aid analysis



SCDG Toy Example
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1 - Binary

2 - Trace

3 - Graph



Common Subgraphs: gSpan Algorithm
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Find common sub-graphs:
• Builds set of (sub-)graphs
• That meet “support” (% of

graph set), here support=1.0
• Example set of graphs

(Note: ignores edge
direction and edge 
labels here.)



gSpan (Implementation) Problems
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Algorithm:
• Scales poorly with graph size
• Vulnerable to pathological cases
Implementation (gBolt [1]):
• Ignores edge direction
• Runs till completion/failure
• Memory exhaustion crashes

1 - https://github.com/Jokeren/DataMining-gSpan



quickSpan: Improved gSpan Implementation
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Extended and improved parallel version of gBolt:
• Edge direction
• (Safe) Time out
• Memory safety (safe failure)
• Minimum and maximum output size
• Fast exit on “success”
• Thread control
• Removes duplicate sub-graphs
• Incremental output
• “Best” output
• …



quickSpan:
Comparison
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Performs very well 
overall! 
Data sets where 
quickSpan is not clear 
winner:
• AIDS
• Cancer

Note: All data sets are
public and gathered from
graph mining papers.
(except Pathological).



Supervised Classification Using gSpan
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Learning:
1. Given graphs from malware family Fi:

obtain canonical representation gi =
gSpan(Fi, learning_parameters)

Classification:
1. Given sample s

For each gi:
calculate similarity using sim(s,gi) =

max_size(gSpan({s,gi}, classification_parameters))
2. Classification result r = max ( sim(s,gi) )
3. If r > threshold then classify as “malware”

otherwise classify as “cleanware”      …(or “unknown”)



Classification Example
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Learning:
• Find common subgraphs
• Take largest 1
Classification:
• Find common sub-graphs
• Test threshold (0.25)?

size(AB)/size(ABC) = 2/3 > 0.25    => true, classify as “malware”

Learned Graph         Sample



Mirai Case Study: Data Set
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Mirai:
• Collected from IoT honeypot (6 April to 14 August 2017)
• Selected only X86 32-bit ELF
Cleanware:
• Static-get distribution[1]

After (attempted) SCDG extraction:
• 504 Mirai SCDGs
• 942 clean SCDGs

1 - http://s.minos.io/



Mirai Case Study: Experiments

Best parameters:
• Undirected
• Learning time 2500
• Support 0.7
• Number of graphs 50
• Threshold 0.32

(Un)Supervised Learning for Malware with quickSpan 11

Conclusions:
• Zero false positives!
• Low false negatives.
• Reasonable classification 

time (1.56s)
Compared with YARA:
• Comparable/better 𝐹".$ score 

(YARA: 84.38 to 98.61%)
• Higher cost



Unsupervised Learning: Clustering

(Un)Supervised Learning for Malware with quickSpan 12

• Exploit gSpan for clustering graphs
– Base algorithm by Seeland et al.
– Allows overlap of clusters

• Apply this to SCDGs
– Cluster by common behaviour
– Should correlate with families

• Aim is to cluster suspected malware samples
– Complement to classification
– Weaker correlation => show new families/evolution



Seeland Clustering Algorithm
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Find clusters in size ordered graphs using gSpan:
For each graph g in the sequence:

clustered = false
For each cluster C in clusters:

If gspan(C+g,1.0,min_size) != {} then
C += g
clustered = true

If clustered == false
clusters.append({g})

Cluster 1

New graph..

Cluster 2
Run gSpan with Cluster 1 …

not common enough, new cluster.common enough, add to cluster 1.

Run gSpan with Cluster 2 …

not common enough, but already clustered.



Practical Clustering
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The min_size parameter is unclear, possibilities:
• Fixed/absolute (base algorithm):

– User must specify/know the optimal size
– Size is chosen uniformly for all graph sizes

• Percentage of graph:
– User must specify/know the percentage that is optimal
– Percentage automatically adjusts for graph size

• Computation based:
– User doesn’t need to specify
– Automatically adjusts for graph size

The sorting by size is sub-optimal:
• Instead we use random ordering



Initial Experiment Configuration
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Small sample experiment with:
• 5 families (1-20 graphs each):

– Browserfox 6 graphs
– Loadmoney 16 graphs
– Shodi 1 graph
– Virlock 20 graphs
– Zbot 8 graphs

• quickSpan parameters:
– Timeout
– Direction
– min_size



Experimental Results
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Conclusions
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gSpan:
• Good graph mining algorithm
• quickSpan adds performance and quality of life features
• Useful for both supervised and unsupervised learning
Supervised Learning:
• Good results on Mirai
• Comparable with YARA
• Highly tuneable
Unsupervised Learning:
• Good results for correctness of clustering
• Highly tuneable


